Selasa, 01 Agustus 2017

BAB 1 OPERASI ALJABAR PADA MATRIKS

Operasi Aljabar pada matriks


Gambar terkait

1. Penjumlahan matriks
Penjumlahan dua buah matriks akan mendapatkan matriks baru yang elemen-elemennya adalah jumlah dari elemen-elemen  yang bersesuaian dari matriks sebelumnya. Dua buah matriks dapat dijumlahkan syaratnya harus mempunyai ordo yang sama.
Contoh :
2. Pengurangan matriks
Pengurangan dua buah matriks akan menghasilkan matriks lain yang elemen-elemennya merupakan selisih elemen-elemen yang bersesuaian dari matriks sebelumnya. Dua buah matriks dapat dikurangkan syaratnya mempunyai ordo yang sama.
Contoh :
3. Perkalian matriks dengan skalar
Perkalian matriks A dengan skalar k dinotasikan kA akan menghasilkan matriks baru yang elemen-elemennya merupakan hasil perkalian semua elemen-elemen A dengan skalar k.
Contoh :
4. Perkalian matriks
Perkalian dua buah matriks akan menghasilkan matriks baru elemen-elemennya merupakan jumlah dari perkalian setiap elemen baris matriks matriks pertama dengan setiap elemen kolom matriks kedua. Dua buah matriks dapat dikalikan syaratnya banyaknya kolom matriks pertama sama dengan banyaknya baris matriks kedua atau secara matematis Akxl.Blxm = Ckxm
Contoh :
 Ordo A 2×2 ordo B 2×3 = 2×3

BAB 2 RUMUS DAN PERBANDINGAN TRIGONOMETRI

Materi Lengkap Trigonometri Dengan Fungsi , Rumus Dan Pembahasan Contoh Soal



Hasil gambar untuk trigonometriDalam merancang kerangka sebuah jembatan perhitungan yang dilakukan tidaklah mudah. Beban, tegangan, serta gaya yang bekerja pada jembatan menjadi pertimbangan utama para perancang untuk mengonstruksikan model rancangannya. Proses ini didasarkan atas pengetahuan dari bangsa Romawi bahwa busur dapat menjangkau jarakyang lebih jauh dan menahan berat yang lebih berat daripada lintel (bentuk balok yang lurus horizontal). Atas dasar ini semakin banyak pula jembatan berbentuk busur yang dibangun. Penggunaan bentuk busur ini melibatkan kelengkungan yang perlu diperhitungkan kemiringan sudutnyayang diberikan dalam persamaan trigonometri. Lebih lanjut mengenai persamaan trigonometri akan Anda pelajari pada uraian berikut.

A. Perbandingan Trigonometri

Perhatikan lingkaran dengan pusat O (0, 0) dan jari-jari (r), sedangkan titik A (x, y) pada lingkaran dan sudut dibentuk oleh OA terhadap sumbu X. Pada berlaku r2 = x2 + y2 sehingga diperoleh perbandingan trigonometri sebagai berikut.
lingkaran  1e

1. Rumus Jumlah dan Selisih dua Sudut

a. Rumus untuk Cosinus jumlah selisih dua sudut
cos (A + B) = cos A cos B – sin A sin B cos
(A – B) = cos A cos B + sin A sin B
b. Rumus untuk Sinus Jumlah dan Selisih Dua Sudut
sin (A + B) = sin A cos B + cos A sin B sin
(A – B) = sin A cos B – cos A sin B
c. Rumus untuk Tangen Jumlah dan Selisih Dua Sudut
2e
Contoh Soal
Jika tan 5°= p tentukan tan 50°
Jawab :
3e

2. Rumus Trigonometri untuk sudut rangkap

a. Dengan menggunakan rumus sin (A+ B) untuk A = B, maka diperoleh:
sin 2A = sin (A + B)
= sin A cos A + cos A sin A
= 2 sin A cos A
Jadi,sin2A =2 sin A cos A
b. Dengan menggunakan rumus cos (A + B) untuk A = B, maka diperoleh:
cos 2A = cos (A + A)
= cos A cos A-sin A sin
A = cos2A-sin2A ……………(1)
Atau
Cos 2A = cos2A-sin2A
= cos2 A- (1 – cos2 A)
= cos2 A – 1 + cos2 A
= 2 cos2 A – 1     ……….(2)
Atau
Cos 2A = cos2A-sin2A
= (1 -sin2A)-sin2A
= 1 – 2 sin2A  ………. (3)
Dari persamaan (1) (2) (3) didapatkan rumus sebagai berikut.
Cos 2A = cos2 A – sin2 A
= 2 cos2 A-1
= 1 – 2 sin2 A
c. Dengan menggunakan rumus tan (A+B) untuk A=B, diperoleh
4e

B.  Perkalian, Penjumlahan, dan Pengurangan Sinus dan Kosinus

a. Rumus Perkalian Sinus dan Kosinus

  • 2 sin A sin B = cos (A- B) – cos (A+ B)
  • 2 sin A cos B = sin (A + B) + sin (A-B)
  • 2 cos A sin B = sin (A + B)-sin (A-B)
  • 2 cos A cos B = cos (A + B) + cos (A- B)
Contoh Soal
Tentukan nilai dari: 2 cos 75° cos 15°
Jawab:
2 cos 75° cos 15° = cos (75 +15)° + cos (75 – 15)°
= cos 90° + cos 60°
= 0 + ½
= ½
b.Rumus Penjumlahan dan Pengurangan Sinus dan Kosinus
  • sin A + sin B = 2sin ½ (A+B) cos ½ (A-B)
  • sin A – sin B = 2cos ½ (A+B) sin ½ (A-B)
  • cos A + cos B = 2cos ½ (A+B) cos ½ (A-B)
  • cos A – cos B = -2sin ½ (A+B) cos ½ (A-B)
  • tan A + tan B = 5e
  • tan A – tan B =6e
Contoh Soal
Tentukan nilai dari sin 105° + sin 15°
jawab:
sin 105° + sin 15° = 2 sin ½ (105+15)°cos ½ (105-15)°
= 2 sin ½ (102)° cos ½ (90)°
= sin 60° cos 45°
7e

C. Identitas Trigonometri

Rumus rumus dasar identitas trigonometri sebagai berikut.
8e
Untuk membuktikan suatu persamaan mempakan identitas atau bukan maka persamaan itu diubah dengan salah satu dari cara-cara berikut.
  • Mengubah bentuk ruas kiri sehingga menjadi bentuk ruas kanan.
  • Mengubah bentuk ruas kanan, sehingga menjadi bentuk ruas kiri.
  • Mengubah bentuk ruas kiri maupun ruas kanan sehingga menjadi bentuk yang sama.
Contoh Soal
Buktikan bahwa sin4 Î± – sin2 Î± = cos4 Î± – cos2 Î±
Jawab.
sin4 Î± – sin2 Î± = (sinα)2 – sin2 Î±
= (1 cos2 Î±) 2 – (1 cos2 Î±)
= 1 – 2 cos2 Î± + cos4 Î± – 1 + cos2 Î±
= cos4 Î± – cos2 Î± 
Demikian penjelasan yang bisa kami sampaikan tentang Materi Lengkap Trigonometri Dengan Fungsi , Rumus Dan Pembahasan Contoh Soal. Semoga postingan ini bermanfaat bagi pembaca dan bisa dijadikan sumber literatur untuk mengerjakan tugas. Sampai jumpa pada postingan selanjutnya



Pos

BAB 3 RELASI DAN FUNGSI

RELASI DAN FUNGSI

Hasil gambar untuk relasi dan fungsi



PENGERTIAN RELASI

Relasi adalah suatu aturan yang memasangkan anggota himpunan ke himpunan lain. Suatu relasi dari himpunan A ke himpunan B adalah pemasangan atau perkawanan atau korespondensi dari anggota-anggota himpunan A ke anggota-anggota himpunan B.
Jika diketahui himpunan A = {Eko, Rina, Tono, Dika}; B = {Merah, Hitam, Biru}, maka relasi “suka dengan warna” himpunan A ke himpunan B dapat disajikan dalam diagram panah, diagram Cartesius, himpunan pasangan berurutan, dan dengan rumus.
a. Diagram panah
relasi: diagram panah
b. Diagram Cartesius
relasi: diagram cartesius
c. Himpunan pasangan berurutan
R = {(Eko, Merah), (Rina, Hitam), (Tono, Merah), (Dika, Biru)}

FUNGSI

PENGERTIAN FUNGSI MATEMATIKA

FUNGSI MATEMATIKA
Suatu relasi dari himpunan A ke himpunan B disebut fungsi dari A ke B jika setiap anggota A dipasangkan dengan tepat satu anggota B.
Jika f adalah suatu fungsi dari A ke B, maka:
  • himpunan A disebut domai (daerah asal).
  • himpunan B disebut kodomain (daerah kawan) dan himpunan B yang pasangan (himpunan C) disebut range (hasil) fungsi f.
Aturan yang memasangkan anggota-anggota hhimpunan A dengan anggota-anggota himpunan B disebut aturan fungsi f.
Misal diketahui fungsi-fungsi:
f: A → B  ditentukan dengan notasi f(x).
g: C → D  ditentukan dengan notasi g(x).
Untuk lebih memahami tentang fungsi, pelajarilah contoh soal berikut.

CONTOH SOAL

Diketahui A + {1, 2, 3, 4} dan B = {1, 2, 3, 4, 5, 6, 7, 8}. Suatu fungsi f: A → B ditentukan oleh f(x) + 2x-1.
a. Gambarlah fungsi f dengan diagram panah.
b. Tentukan range fungsi f.
c. Gambarlah grafik fungsi f.

Penyelesaian 

a.
diagram panah fungsi f
Diagram panah fungsi f
b. Dari diagram diatas, terlihat bahwa:
f(x) = 2x-2
f(1) = 2.2-1 = 1
f(2) = 2.2-1 =3
f(3) = 2.3-1 = 5
f(4) = 2.4-1 = 7

BAB 4 BARISAN DAN DERET

BARISAN DAN DERET

Hasil gambar untuk barisan dan deret




Baris
Baris adalah daftar urutan bilangan dari kiri ke kanan yang mempunyai pola tertentu. Setiap bilangan dalam barisan merupakan suku dalam barisan.

Contoh:
1, 2, 3, 4, 5, ... , dst.
3, 5, 7, 9, 11, … , dst.

Deret
Deret adalah penjumlahan suku-suku dari suatu barisan. Jika suatu barisan:
 makaadalah Deret.

Contoh:
1 + 2 + 3 + 4 + 5, ... + Un
3 + 5 + 7 + 9 + 11 + … + Un.

Barisan Aritmatika
Barisan aritmatika adalah barisan dengan selisih antara dua suku yang berurutan selalu tetap. Selisih tersebut dinamakan beda dan dilambangkan dengan “b

Contoh:
3, 6, 9, 12, 15.
Barisan diatas merupakan barisan aritmatika karena selisih dari setiap suku yang berurutan selalu sama/tetap, yaitu 6 – 3 = 9 – 6 = 12 – 9 = 15 – 12 = 3. Nah 3 inilah yang dinamakan beda.

Bentuk umum barisan aritmatika:


a, (a+b), (a+2b), (a+3b), …, (a+(n-1)b)

Rumus:
Beda:
Suku ke-n:

           atau



Keterangan:
a = U1 = Suku pertama
b = beda
n = banyak suku
Un= Suku ke-n

Contoh soal:
1. Suku pertama dari barisan aritmatika adalah 3 dan bedanya = 4, suku ke-10 dari barisan aritmatika tersebut adalah …
Penyelesaian:
   a = 3
   b = 4

       
       
2. Diketahui barisan aritmatika sebagai berikut: 5, 8, 11, …
Tentukan:
Nilai suku ke-15 !
Penyelesaian:

       
       
3. Diketahui suatu barisan aritmatika suku pertamanya adalah 4 dan suku ke-20 adalah 61.
Tentukan beda barisan aritmatika tersebut!
Penyelesaian:
    a = 4

Suku Tengah Barisan Aritmatika
Jika barisan aritmatika mempunyai banyak suku (n) ganjil, dengan suku pertama a, dan suku terakhir Un maka suku tengah Ut dari barisan tersebut adalah sebagai berikut:

Contoh soal:
Diketahui barisan aritmatika 5, 8, 11, …, 125, 128, 131. Suku tengahnya adalah …
Penyelesaian:
barisan aritmatika 5, 8, 11, …, 125, 128, 131
suku pertama, a = 5
suku ke-n, Un = 131
suku tengah:

Deret Aritmatika
Deret aritmatika adalah jumlah suku-suku dari suatu barisan aritmatika.
Bentuk umum deret aritmatika:
a + (a+b) + (a+2b) + (a+3b) + …+ (a+(n-1)b)

rumus:
         atau
keterangan:
Sn = jumlah n suku pertama

Contoh soal:
Diketahui deret aritmatika sebagai berikut,
Tentukan:
a. Suku ke-10
b.  Jumlah sepuluh suku pertama 
Penyelesaian:
a. Suku ke-10
       
       
b. Jumlah sepuluh suku pertama:

Sisipan pada Barisan Aritmatika
Apabila antara dua suku barisan aritmatika disisipkan k buah bilangan (suku baru) sehingga membentuk barisan aritmatika baru, maka:
• Beda barisan aritmatika setelah disispkan k buah suku akan berubah dan dirumuskan:
• Banyak suku barisan aritmatika setelah disisipkan k buah suku:
• Jumlah n suku pertama setelah disisipkan k buah suku:
Keterangan:
b’ = beda barisan aritmatika setelah disisipkan k buah suku
n’ = banyak suku barisan aritmatika baru
n = banyak suku barisan aritmatika lama
k = banyak suku yang disisipkan
Sn’ = jumlah n suku pertama setelah disisipkan k buah suku

Contoh Soal:
Antara bilangan 20 dan 116 disisipkan 11 bilangan sehingga bersama kedua bilangan semula terjadi deret hitung. Maka jumlah deret hitung yang terjadi adalah …
Penyelesaian:
Diketahui: deret aritmatika mula-mula: 20 + 116
a = 20
Un = 116
n = 2
k = 11 bilangan
banyaknya suku baru : n’ = n + (n-1) k
     = 2 + (2-1) 11 = 2 + 11 = 13

Jadi, jumlah deret aritmatika setelah sisipan adalah 884

BAB 1 OPERASI ALJABAR PADA MATRIKS

Operasi Aljabar pada matriks 1. Penjumlahan matriks Penjumlahan dua buah matriks akan mendapatkan matriks baru yang elemen-elemen...